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Abstract 

Understanding human emotions from speech signals has applications in virtual assistants, mental health 

analysis, and human-computer interaction. This paper presents a Long Short-Term Memory (LSTM) 

network-based approach for speech emotion recognition using Mel-frequency cepstral coefficients 

(MFCC) as audio features. We preprocess audio recordings from the RAVDESS and EMO-DB datasets 

by extracting 13-dimensional MFCC vectors, energy coefficients, and delta features. LSTM models, 

capable of modeling temporal dependencies, are trained to classify utterances into emotion categories: 

happiness, sadness, anger, fear, disgust, and neutral. We compare our LSTM model with traditional 

classifiers like SVM and random forests, observing a 7–10% improvement in accuracy across datasets. 

On RAVDESS, our best model achieves 81.4% accuracy, outperforming CNN and GRU-based 

baselines. We conduct ablation studies on input window size and recurrent layer depth to analyze their 

influence on performance. Noise robustness is tested through signal augmentation and filtering. Results 

indicate LSTMs maintain high performance even under moderate background noise. The study also 

explores cross-corpus generalization challenges and highlights the role of balanced training samples. 

This research contributes an effective deep learning-based pipeline for emotion recognition in audio 

and supports its use in building emotionally intelligent AI systems. 

2. Introduction 

Speech emotion recognition (SER) has become an important area in affective computing, with 

applications in intelligent virtual assistants, automated therapy tools, call center analytics, and 

human-computer interaction. Recognizing emotional cues from speech enables AI systems to 

understand and adapt to users more naturally, bridging the gap between syntactic input and semantic 

context. 

Traditional SER systems rely on hand-engineered features combined with machine learning classifiers 

like Support Vector Machines (SVMs) or decision trees. While effective in constrained settings, these 

models often lack robustness and generalizability in real-world scenarios where temporal context plays 

a critical role. 

Recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM) architectures, 

have demonstrated state-of-the-art performance in tasks involving sequential data such as speech and 

language. LSTMs can capture long-range temporal dependencies in audio signals, making them well-

suited for emotion classification based on prosodic and spectral cues. 

This paper proposes a deep learning pipeline using LSTM networks trained on MFCC-based 

acoustic features extracted from the RAVDESS and EMO-DB datasets. We benchmark performance 

against baseline models and assess generalization through ablation and noise augmentation 

experiments. 
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3. Hypothesis 

The experimental work in this study is based on the following hypotheses: 

• H1: LSTM networks outperform traditional classifiers (e.g., SVMs, random forests) and other 

deep models (e.g., CNNs, GRUs) on SER tasks due to their ability to capture temporal context. 

• H2: Including first- and second-order MFCC derivatives (delta and delta-delta) improves 

classification accuracy. 

• H3: Emotion recognition accuracy is sensitive to the window size and layer depth of the 

LSTM, suggesting the need for architectural tuning. 

• H4: LSTM models maintain performance under moderate levels of background noise, 

making them suitable for real-world applications. 

• H5: Cross-corpus generalization remains a significant challenge, with models trained on one 

dataset performing sub-optimally on another without adaptation. 

These hypotheses guide the experimental procedures and model evaluations presented in the subsequent 

sections. 

 

4. Experimental Setup 

4.1 Datasets 

Two publicly available speech emotion corpora were used: 

• RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song): 1,440 audio files 

labeled with eight emotions, balanced across male and female speakers. 

• EMO-DB (Berlin Database of Emotional Speech): 535 utterances across seven emotions 

recorded by German actors. 

To maintain consistency, we focused on the six common emotion categories: neutral, happiness, 

sadness, anger, fear, and disgust. 

4.2 Feature Extraction 

• MFCCs: 13 base coefficients extracted using 25 ms windows with 10 ms stride. 

• Delta and Delta-Delta: First and second-order temporal derivatives computed per frame. 

• Energy and Pitch: Included as supplementary prosodic features. 

All features were normalized per utterance. Final input to the model was a 39-dimensional feature vector 

sequence (13 MFCC + 13 delta + 13 delta-delta). 

4.3 Model Architecture 

• LSTM-based classifier: 

o Input: Time-distributed MFCC vectors 

o Layers: 2 LSTM layers (64 units each) followed by dropout and dense softmax layer 
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o Loss: Categorical cross-entropy 

o Optimizer: Adam (learning rate 1e-3) 

• Baseline models: 

o Support Vector Machine (RBF kernel) 

o Random Forest (100 trees) 

o CNN with 1D convolution 

o Gated Recurrent Unit (GRU) 

4.4 Evaluation Protocol 

• 5-fold stratified cross-validation on both datasets. 

• Macro-averaged accuracy, F1-score, and confusion matrices reported. 

• For cross-corpus testing, models trained on RAVDESS were evaluated on EMO-DB (and vice 

versa). 

 

5. Procedure 

1. Preprocessing: 

All audio files were downsampled to 16 kHz, denoised with a spectral subtraction filter, and 

amplitude-normalized. MFCCs and derivative features were extracted using the LibROSA 

toolkit. 

2. Model Training: 

LSTM and baseline models were trained using Keras with early stopping on validation loss 

(patience = 5). Each model was trained for a maximum of 50 epochs. 

3. Hyperparameter Tuning: 

o LSTM: Number of layers (1–3), units per layer (32–128), dropout rate (0.2–0.5) 

o SVM: C, gamma, and kernel type 

o CNN: Filter size, kernel width, and pooling strategy 

4. Ablation Studies: 

Separate experiments were conducted to: 

o Compare raw MFCCs vs. MFCC + deltas 

o Evaluate different sequence lengths (frame counts per utterance) 

o Analyze performance by emotion type (e.g., happiness vs. sadness) 

5. Noise Robustness Testing: 

Gaussian and real-world noise (café, traffic) were added at 10 dB and 20 dB SNR levels. Models 

were retrained with noise-augmented data to assess generalization under realistic conditions. 

 

6. Data Collection and Analysis 
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6.1 Baseline Model Comparison 

Using 5-fold cross-validation on the RAVDESS dataset, the LSTM model achieved an accuracy of 

81.4%, outperforming GRU (79.2%), CNN (77.8%), SVM (72.4%), and Random Forest (73.1%) (see 

Figure 1). LSTM's ability to model long-range dependencies in the MFCC sequences proved 

advantageous, especially for emotions like fear and sadness, where temporal variation is more 

pronounced. 

• F1-scores averaged: 

o LSTM: 0.79 

o GRU: 0.77 

o CNN: 0.75 

o SVM: 0.70 

Confusion matrices showed that anger and happiness were the most accurately predicted emotions, 

while fear and disgust had the highest misclassification rates due to overlapping acoustic features. 

6.2 Ablation Studies 

• Feature Type: Adding delta and delta-delta MFCCs improved accuracy by ~3.7% over raw 

MFCCs alone. 

• Window Size: Optimal performance was observed with a window size of 100–120 frames. 

Longer sequences added noise, while shorter sequences lost contextual cues. 

• LSTM Depth: Two-layer LSTMs achieved the best trade-off between complexity and 

generalization. Deeper models tended to overfit, especially on the smaller EMO-DB dataset. 

6.3 Noise Robustness 

After training on noise-augmented data: 

• Accuracy dropped by 3–4% at 10 dB SNR, and 1–2% at 20 dB SNR. 

• LSTM outperformed CNN and GRU in all noise conditions, likely due to its internal gating 

mechanisms. 

• Gaussian and café noise had a more detrimental impact than background traffic, indicating that 

high-frequency distortions interfere more with emotional prosody. 

 

7. Results 

Model Accuracy (%) F1-score Robustness @10dB Accuracy Loss (%) 

SVM 72.4 0.70 66.3 -6.1 

Random Forest 73.1 0.72 67.9 -5.2 

CNN 77.8 0.75 72.1 -5.7 

GRU 79.2 0.77 74.6 -4.6 
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Model Accuracy (%) F1-score Robustness @10dB Accuracy Loss (%) 

LSTM 81.4 0.79 77.2 -4.2 

Key Observations: 

• LSTM consistently outperforms other models in both clean and noisy conditions. 

• Temporal modeling plays a crucial role in distinguishing subtle emotional shifts. 

• Noise-augmented training provides moderate robustness, with less than 5% accuracy drop at 

10 dB SNR. 

 

Figure 1. Classification accuracy of various models trained on the RAVDESS speech emotion dataset. 

LSTM outperforms all other methods with 81.4% accuracy, followed by GRU and CNN. Traditional 

models like SVM and Random Forest perform notably lower, confirming the advantage of temporal 

modeling for emotion recognition. 

 

8. Discussion 

This study reinforces the importance of temporal modeling in speech-based emotion recognition. The 

LSTM model demonstrated superior performance in accuracy, robustness, and generalizability. Unlike 

CNNs that focus on local patterns or SVMs that rely on static features, LSTMs can leverage sequential 

dynamics, capturing how emotion unfolds over time. 

The ablation experiments highlighted the value of delta and delta-delta MFCCs, providing motion-

sensitive features that enhance model discrimination. Moreover, the noise robustness tests validated 

the applicability of LSTM-based systems in real-world settings, such as voice interfaces in mobile 

environments. 

However, cross-corpus testing (not shown in full for brevity) revealed a significant drop in accuracy 

(~15%), confirming that SER models tend to overfit to speaker-specific traits and language cues. This 

challenge points to the need for domain adaptation techniques and speaker-invariant 

representations. 
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Finally, while LSTMs perform well, they come with higher training times and hyperparameter 

sensitivity compared to simpler classifiers. Future work should explore hybrid models (e.g., CNN-

LSTM) and attention mechanisms to improve interpretability and efficiency. 

 

9. Conclusion 

We presented a speech emotion recognition framework using LSTM networks trained on MFCC-based 

features from two benchmark datasets. The LSTM model consistently outperformed traditional machine 

learning and deep learning baselines, achieving 81.4% accuracy on RAVDESS and demonstrating 

resilience to moderate background noise. 

Our contributions include: 

• A deep pipeline using delta-augmented MFCCs and bi-layer LSTMs 

• Extensive comparison with baseline models and cross-corpus analysis 

• Validation of performance under noise augmentation and varying sequence configurations 

These results support the viability of LSTMs for real-time, emotionally aware speech applications. 

Future directions include transfer learning, multimodal fusion with visual cues, and real-world 

deployment in healthcare and customer service AI. 
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